
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 26, No. 3, August 2013

NOTE ON STIRLING POLYNOMIALS

Junesang Choi*

Abstract. A large number of sequences of polynomials and num-
bers have arisen in mathematics. Some of them, for example,
Bernoulli polynomials and numbers, have been investigated deeply
and widely. Here we aim at presenting certain interesting and
(potentially) useful identities involving mainly in the second-order
Eulerian numbers and Stirling polynomials, which seem to have not
been given so much attention.

1. Introduction and preliminaries

Some sequences of polynomials arise often in mathematics that we
give them special names which are mainly named after persons who in-
vented, for example, Bernoulli polynomials, Euler polynomials, Genoc-
chi polynomials, Hermite polynomials, Laguerre polynomials, Jacobi
polynomials and so on (see, e.g., [8] and [10, Section 1.7]). Likewise,
certain sequences of numbers appear so often in mathematics that we
recognize them immediately and give them special names, for example,
square numbers, triangular numbers, prime numbers, Bernoulli num-
bers, Euler numbers, Eulerian numbers, Stirling numbers, Fibonacci
numbers, and so on (see, e.g., the references given here). We begin by
recalling Bernoulli polynomials and numbers. The Bernoulli polynomials
Bn(x) are defined by the generating function:

(1.1)
z exz

ez − 1
=

∞∑

n=0

Bn(x)
zn

n!
(|z| < 2π).
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The numbers Bn := Bn(0) are called the Bernoulli numbers generated
by

(1.2)
z

ez − 1
=

∞∑

n=0

Bn
zn

n!
(|z| < 2π).

It easily follows from (1.1) and (1.2) that

(1.3) Bn(x) =
n∑

k=0

(
n

k

)
Bk xn−k.

The Bernoulli polynomials Bn(x) satisfy the difference equation:

(1.4) Bn(x + 1)−Bn(x) = nxn−1 (n ∈ N0),

which yields

(1.5) Bn(0) = Bn(1) (n ∈ N \ {1}).
Setting x = 1 in (1.3), in view of (1.5), we have

(1.6) Bn =
n∑

k=0

(
n

k

)
Bk,

which gives a recursion formula for computing Bernoulli numbers. The
first few of the Bernoulli numbers are listed here:

(1.7) B0 = 1, B1 = −1
2
, B2 =

1
6
, B4 = − 1

30
, B6 =

1
42

, B8 = − 1
30

.

The generalized Bernoulli polynomials B
(α)
n (x) of degree n in x are de-

fined by the generating function:

(1.8)
(

z

ez − 1

)α

exz =
∞∑

n=0

B(α)
n (x)

zn

n!
(|z| < 2π; 1α := 1)

for arbitrary (real or complex) parameter α. Clearly, we have

(1.9) B(α)
n (x) = (−1)n B(α)

n (α− x),

so that

(1.10) B(α)
n (α) = (−1)n B(α)

n (0) =: (−1)n B(α)
n

in terms of the generalized Bernoulli numbers B
(α)
n defined by the gen-

erating function:

(1.11)
(

z

ez − 1

)α

=
∞∑

n=0

B(α)
n

zn

n!
(|z| < 2π; 1α := 1).
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It is easily observed that

(1.12) B(1)
n (x) = Bn(x) and B(1)

n = Bn (n ∈ N0).

We also recall a close relative of the binomial coefficients, the Stirling
numbers of the first kind, named after James Stirling (1692-1770). There
are also Stirling numbers of the second kind. Although they have a
revered and many applications, their notations have not been used in
one way, like the binomial coefficient

(
n
k

)
. Following Jovan Karamata

[7], Graham et al. [6] have used
{

n
k

}
for Stirling numbers of the second

kind and
[
n
k

]
for Stirling numbers of the first kind by noting that these

symbols turn out to be more user-friendly than the many other notations
that people have tried. Here we agree to use the notation

[
n
k

]
for Stirling

numbers of the first kind, which counts the number of ways to arrange
n objects into k cycles. Note that

[
n
k

]
is also called the unsigned or

absolute Stirling number of the first kind (see, e.g., [2, p. 213]).
This

[
n
k

]
satisfies the following recurrence:

(1.13)
[
n

k

]
= (n− 1)

[
n− 1

k

]
+

[
n− 1
k − 1

]
(n ∈ N),

where N denotes the set of positive integers. We recall some values of[
n
k

]
:

(1.14)

[
n

0

]
= [n = 0],

[
n

1

]
= (n− 1)! (n ∈ N),

[
n

n

]
= 1,

[
n

n− 1

]
=

(
n

2

)
,

[
n

2

]
= (n− 1)! Hn−1 (n ∈ N),

where the notation [n = m] denotes 1 if n = m and 0 otherwise, Hn are
the harmonic numbers defined by

(1.15) Hn :=
n∑

k=1

1
k

(n ∈ N) and H0 := 0.

For the last identity in (1.14), see also and compare its corresponding
identity in [10, p. 77].

Another triangle of values which has often been appeared is due to
Leonhard Euler (1707-1783) and called Eulerian numbers denoted by〈
n
k

〉
. The angle brackets in this case suggests less than and greater than;〈

n
k

〉
is the number of permutations π1 π2 · · ·πn of {1, 2, . . . , n} that have

k ascents, namely, k places where πj < πj+1. This
〈
n
k

〉
satisfies the
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following recurrence:

(1.16)
〈

n

k

〉
= (k + 1)

〈
n− 1

k

〉
+ (n− k)

〈
n− 1
k − 1

〉
(n ∈ N).

We recall some values of
〈
n
k

〉
:

〈
n

n

〉
= [n = 0],

〈
n

k

〉
=

〈
n

n− 1− k

〉
(n ∈ N),

〈
0
k

〉
= [k = 0] (k ∈ Z),

(1.17)

where Z denotes the set of integers.
We recall another triangular pattern of coefficients, shown in Table

270 in [6, p. 270], which are called second-order Eulerian numbers
〈〈

n
k

〉〉
,

because they satisfy a recurrence similar to (1.16) but with n replaced
by 2n− 1 in one place:

(1.18)
〈〈

n

k

〉〉
= (k + 1)

〈〈
n− 1

k

〉〉
+ (2n− 1− k)

〈〈
n− 1
k − 1

〉〉
(n ∈ N).

Gessel and Stanley [4] first noticed that these second-order Eulerian
numbers have a curious combinatorial interpretation (see also [6, p.
270]): If we form permutations of the multiset {1, 1, 2, 2, . . . , n, n}
with special property that all numbers between the two occurrences of
m are greater than m, for 1 6 m 6 n, then

〈〈
n
k

〉〉
is the number of such

permutations that have k ascents. Graham et al. [6, p. 271] remarked
that second-order Eulerian numbers are important chiefly because of
their connection with Stirling numbers [5]: For example,

(1.19)
[

x

x− n

]
=

n∑

k=0

〈〈
n

k

〉〉(
x + k

2n

)
(n ∈ N0) ,

which holds true whenever x is an integer and n is a nonnegative integer.
Since the right-hand side of of (1.19) is a polynomial in x, we can use
(1.19) to define Stirling numbers of the first kind for arbitrary real (or
complex) values of x.

If n ∈ N, the polynomial
[

x
x−n

]
is zero when x = 0, x = 1, . . ., and

x = n; therefore it is divisible by (x − 0), (x − 1), . . ., and (x − n).
Graham et al. [6, p. 271] observed that it is interesting to look at
what has left after these known factors are divided out. They define the
Stirling polynomials σn(x) by the rule (see [6, p. 271, Eq. (6.45)]):

(1.20) σn(x) =
[

x

x− n

]
/(x(x− 1) · · · (x− n)) (n ∈ N0) ,
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which is a polynomial in x of degree n − 1. They [6, p. 272] presented
several formulas involving the Stirling polynomials σn(x) which are also
defined by the generating function:

(1.21)
(

z ez

ez − 1

)x

= x
∞∑

n=0

σn(x) zn.

In this paper we aim at presenting certain interesting identities mainly
involving the second-order Eulerian numbers and the Stirling polynomi-
als σn(x).

For our purpose, we also recall the following functions. The Psi (or
Digamma) function ψ(z) is defined by
(1.22)

ψ(z) :=
d

dz
{log Γ(z)} =

Γ′(z)
Γ(z)

or log Γ(z) =
∫ z

1
ψ(t) dt,

where Γ(z) is the familiar Gamma function (see, e.g., [9, Section 1.1] and
[10, Section 1.1]). For the sake of completeness, we recall the Polygamma
functions ψ(n)(z) (n ∈ N) defined by

(1.23) ψ(n)(z) :=
dn+1

dzn+1
log Γ(z) =

dn

dzn
ψ(z) (n ∈ N0; z 6∈ Z−0 ),

where Z−0 denotes the set of nonpositive integers. In terms of the gen-
eralized (or Hurwitz) Zeta function ζ(s, a) (see, e.g., [10, Section 2.2]),
we can write

ψ(n)(z) = (−1)n+1 n!
∞∑

k=0

1
(k + z)n+1

= (−1)n+1 n! ζ(n + 1, z) (n ∈ N; z 6∈ Z−0 ),

(1.24)

which may be used to deduce the properties of ψ(n)(z) (n ∈ N) from
those of ζ(s, z) (s = n + 1; n ∈ N) and vice versa.

2. Identities involving the second-order Eulerian numbers
and the Stirling polynomials σn(x)

From (1.19) and (1.20), it is easy to rewrite σn(x) in the following
form:

(2.1) σn(x) =
1

(n + 1)!
(

x
n+1

)
n∑

k=0

〈〈
n

k

〉〉(
x + k

2n

)
(n ∈ N0) .
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By using the expression (see, e.g., [10, p. 5]):

(2.2)
(

x

n

)
=

Γ(x + 1)
n! Γ(x− n + 1)

and differentiating each side of (2.1) with respect to the variable x, we
get
(2.3)

σ′n(x) =
1

(n + 1)!
(

x
n+1

)
n∑

k=0

〈〈
n

k

〉〉(
x + k

2n

)

· [(ψ(x− n)− ψ(x + 1)) + (ψ(x + k + 1)− ψ(x + k − 2n + 1))] .

By using the following known formula for Psi function (see, e.g., [10, p.
25]):

(2.4) ψ(z + n) = ψ(z) +
n∑

j=1

1
z + j − 1

(n ∈ N),

a special case of (2.3) when x = 2n yields the following interesting
identity:

(2.5)

σ′n(2n) =
(n− 1)!
(2n)!

(Hn−1 −H2n)
[
2n

n

]

+
(n− 1)!
(2n)!

n∑

k=0

〈〈
n

k

〉〉(
2n + k

2n

)
(H2n+k −Hk) ,

where Hn are the harmonic numbers given in (1.15).
The Pochhammer symbol (λ)n is defined (for λ ∈ C) by (see [9, p. 2

and p. 6] and [10, p. 2 and pp. 4–6]):

(2.6)
(λ)n : =

{
1 (n = 0)

λ(λ + 1) . . . (λ + n− 1) (n ∈ N)

=
Γ(λ + n)

Γ(λ)
(λ ∈ C \ Z−0 ),

where C denotes the set of complex numbers. Using (2.6), we have

(2.7)
(

λ

n

)
=

Γ(λ + 1)
n! Γ(λ− n + 1)

=
(−1)n (−λ)n

n!
.

Applying (2.7) to (2.1), we obtain σn(x) in the following form:

(2.8) (−1)n+1 (2n)! (−x)n+1 σn(x) =
n∑

k=0

〈〈
n

k

〉〉
(−x−k)2n (n ∈ N0) .
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By recalling the following known expansion for (x)n (see [6, p. 264]):

(2.9) (x)n =
n∑

`=0

[
n

`

]
x` (n ∈ N0)

to the right-hand side of (2.8) and using the binomial theorem, we get

(2.10)

(−1)n+1 (2n)! (−x)n+1 σn(x)

=
n∑

k=0

2n∑

`=0

∑̀

j=0

(−1)`

〈〈
n

k

〉〉[
2n

`

](
`

j

)
k`−j xj

=
n∑

k=0

2n∑

j=0

2n∑

`=j

(−1)`

〈〈
n

k

〉〉[
2n

`

](
`

j

)
k`−j xj ,

where, for the second equality, we have used the following rearrangement
formula for a double finite series (see, e.g., [1, Eq. (1.24)]):

(2.11)
n∑

k=0

k∑

`=0

Ak,` =
n∑

`=0

n∑

k=`

Ak,`.

Setting x = r ∈ N0 with 0 6 r 6 n − 1 in the right-hand side of (2.10)
is easily seen to reduce to zero. So we have the following interesting
formulas: For r ∈ N0 with 0 6 r 6 n− 1,

(2.12)

0 =
n∑

k=0

2n∑

`=0

∑̀

j=0

(−1)`

〈〈
n

k

〉〉[
2n

`

](
`

j

)
k`−j rj

=
n∑

k=0

2n∑

j=0

2n∑

`=j

(−1)`

〈〈
n

k

〉〉[
2n

`

](
`

j

)
k`−j rj .

Setting x = 2n ∈ N0 in the right-hand side of (2.10), we also obtain the
following interesting formulas:

(2.13)

(2n)!
n

[
2n

n

]
=

n∑

k=0

2n∑

`=0

∑̀

j=0

(−1)`+1

〈〈
n

k

〉〉[
2n

`

](
`

j

)
k`−j (2n)j

=
n∑

k=0

2n∑

j=0

2n∑

`=j

(−1)`+1

〈〈
n

k

〉〉[
2n

`

](
`

j

)
k`−j (2n)j .
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From (1.21), it is fairly straightforward to deduce the addition theo-
rem:

(2.14) σn(x + y) =
x y

x + y

n∑

k=0

σk(x) σn−k(y).

Setting x = 1 in (1.21) and using (1.1), we have

(2.15) σn(1) =
Bn(1)

n!
(n ∈ N0) ,

which, upon considering (1.3) and (1.5), gives
(2.16)

σ1(1) = B1(1) = B0 + B1 =
1
2

and σn(1) =
Bn

n!
(n ∈ N0 \ {1}) .

Setting y = 1 in (2.14) and using (2.16), we have

(2.17) σn(x + 1) =
x

x + 1

(
n−2∑

k=0

Bn−k

(n− k)!
σk(x) +

1
2

σn−1(x) + σn(x)

)
.

Setting α = x in (1.8) is equal to (1.21). Then equating the coeffi-
cients of zn in these two different expressions of the same function, we
obtain

(2.18) σn(x) =
B

(x)
n (x)
n! x

(n ∈ N0) .

Using the relation (2.18) and a known result (see [10, p. 84, Eq.(29)];
see also [11, p. 510, Eq. (3)]), we give the following explicit formula for
the Stirling polynomials:
(2.19)

σn(x) =
1

n! x

n∑

k=0

(
n

k

)(
n + k − 1

k

)
k!

(2k)!

k∑

j=0

(−1)j

(
k

j

)
j2k (x + j)n−k

·2F1[k − n, k − x; 2k + 1; j/(x + j)],

in terms of the Gaussian hypergeometric function 2F1 (see [10, Section
1.5]; see also [8, Chapter 4]).
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